
Wind-US Installation Guide∗

The NPARC Alliance

NASA Glenn Research Center

Cleveland, Ohio

USAF Arnold Engineering Development Center

Tullahoma, Tennessee

∗This is an unnumbered version of this document, created November 4, 2016. Please send corrections, additions,
ideas, etc., to Dennis Yoder at Dennis.A.Yoder@nasa.gov.

Contents

1 Overview 1

2 Obtaining Wind-US and the Tools 3
2.1 IVMS (Internet Version Management System) . 3
2.2 Wind Projects and Versions . 3

2.2.1 Wind-US Application Distribution . 5
2.2.2 Wind-US Build Distribution . 6

2.3 Tools Projects . 7
2.3.1 Tools Application Distribution . 8
2.3.2 Tools Build Distribution . 10
2.3.3 Individual Tools . 10

3 Installing the Application Distributions 11
3.1 Installing on a UNIX System . 11

3.1.1 Using Symbolic Links for Similar Systems . 13
3.1.2 Installation for NFS Access . 15
3.1.3 Installation for Parallel Execution on Distributed Systems 15

3.2 Installing on a Windows System . 16

4 Installing the Build Distributions 17
4.1 Building Wind-US . 17
4.2 Building the Tools . 20

5 Installing and Running the Build Distributions on the NAS 23
5.1 Security Issues on the NAS . 23
5.2 Storage Issues on the NAS . 23
5.3 Computational Resources on the NAS . 23
5.4 Building Wind-US on the NAS . 24
5.5 Building the Tools on the NAS . 28
5.6 Running Wind-US on the NAS . 34

6 Porting Wind-US to a New UNIX Platform 37
6.1 Porting Guidelines . 37
6.2 Frequently (or not) Encountered Problems . 38

iii

1 Overview

The NPARC Alliance flow simulation system is distributed to users as a collection of compressed
tar files, containing Wind-US and several pre- and post-processing tools. Both Wind-US and the tools
are available in two different “distributions” — an application distribution and a build distribution.
The application distributions are intended for those who will be running the codes, but will not
be modifying them. The build distributions are intended for those who must build the executables
themselves, either to run on a computational platform not currently supported by the NPARC
Alliance, or to include some compile-time option not present in the application distribution.1

Wind-US Application Distribution
The Wind-US application distribution includes all the executable programs and scripts
necessary to run Wind-US on a supported computational platform. Due to limited re-
sources, pre-compiled Wind-US 2.0 executables are currently only available for 32-bit and
64-bit Linux systems.

The application distribution includes PVM but not MPI, and the Wind-US executable
was built assuming that PVM message passing will be used for parallel runs. If Wind-US
is to be run on a multi-processor system using MPI, you’ll need to build the Wind-US
executable yourself using the build distribution, and link with the locally-installed MPI
libraries.

Tools Application Distribution
A tools application distribution includes all the executable programs and scripts neces-
sary to run one or more of the various pre- and post-processing tools on a supported
computational platform. This includes:

• GMAN, a pre-processor used for setting boundary conditions and multi-zone con-
nectivity (see the GMAN User’s Guide)

• MADCAP, currently used primarily as a successor to GMAN, and when fully im-
plemented will allow access under one user interface to the full range of tools and
processes used to perform CFD analyses (see the MADCAP User’s Guide)

• CFPOST, a post-processor used to list and plot results, generate reports, and produce
files for other post-processors (see the CFPOST User’s Guide

• A variety of smaller utilities, described in the Wind-US Utilities Guide

Pre-compiled tools executables are generally available for the same platforms as Wind-US.

Wind-US Build Distribution
The Wind-US build distribution contains all the files needed to build and install Wind-US
on a variety of platforms. This includes:

• Source code for the Wind-US flow solver
• Source code for all the required library routines, including PVM
• Scripts needed to run Wind-US
• Makefiles for a variety of computational platforms

Tools Build Distribution
A tools build distribution contains all the files needed to build and install one or more of
the tools on a variety of platforms. This includes:

1 Developers also have access to a development distribution. This is discussed in the Development Environment
section of the Wind-US Developer’s Reference, accessible only to registered Wind-US developers.

1

Wind-US Installation Guide

• Source code for the tool(s)
• Source code for all the required library routines
• Scripts needed to run the tool(s)
• Makefiles for a variety of computational platforms

2

2 Obtaining Wind-US and the Tools

Wind-US, and the associated pre- and post-processing tools, are releasable to all U. S. owned
companies, public and private universities, and government agencies. However, only U. S. citizens
and resident aliens may have access to the software. In general, requests from foreign owned,
controlled, or influenced (i.e., those with nonresident foreign nationals on the board of directors)
corporations will not be granted. Instructions for becoming a registered user may be accessed from
the NPARC Alliance home page at http://www.grc.nasa.gov/WWW/wind/index.html. You may
also contact the NPARC Alliance User Support Team via email to nparc-support@arnold.af.mil,
or by phone at (931) 454-7885.

2.1 IVMS (Internet Version Management System)

Approved users download Wind-US and the tools over the World-Wide Web using the IVMS
(Internet Version Management System). Instructions on obtaining an IVMS account will be supplied
by the NPARC Alliance User Support Team when you become a registered Wind-US user. After
your IVMS account has been activated, you can login to IVMS through the IVMS login page.

After logging in to IVMS, you’ll initially be connected to an opening page similar to the one
shown in Figure 1.

Figure 1: IVMS Projects Page.

Clicking on“Open Wind Development”or“Open Wind Tools”brings up a page listing the various
Wind or Tools “Projects” that are currently available.

2.2 Wind Projects and Versions

Several different versions of Wind and Wind-US may be listed on the Wind Projects Page, shown
in Figure 2.

3

Wind-US Installation Guide

Figure 2: Wind Projects Page.

Officially-released versions are listed as “Wind Version n” or “Wind-US Version n,” where n is
the version number. The most recent officially-released version is called the production version. As
new releases are made, older released versions may also become available.

Once an official release is made, the production version is frozen except for bug fixes, and no new
features are added. New feature development is done using the alpha version, the current “working”
version of the code. About 2–3 months before the next scheduled release date, a beta version may
be listed, and is intended as the next production version. Note, though, that executables for the
beta and alpha versions will usually not be available on as many computational platforms as the
production version.

The project of interest to a typical Wind-US code user is “Wind-US Release 2.0,” containing the
application and build distributions for the current production version of Wind-US. (See Section 1
for a description of the different “distributions”.)

The version number and date for the various Wind projects are shown on the Wind Projects
page, in the columns labeled “Project Version” and “Last Update”. Note that the version number is
for the source code, not necessarily the executables. If bug fixes have been made to the production
version, for example, the executable in the application distribution may be slightly out of date.

4

2 Obtaining Wind-US and the Tools

The executables for the various supported platforms are periodically, but irregularly, updated.
The version numbers and dates for the executables are shown in a table at the start of the “Source
History” page, viewable by clicking on the project name in the first column of the Wind Projects
page. A typical table is shown below.

Project Name Current Version Last Update
Wind-US Release 2.0 2.213 6/26/2007 12:57:19

LINUX32-GLIBC2.3/XEON 2.212 6/25/2007 11:05:41
LINUX64-GLIBC2.3/OPTERON 2.212 6/25/2007 11:05:41

From the table, the current version of the source code for Wind-US Release 2.0 is 2.213. The “Last
Update” date shown for Wind-US Release 2.0 is either the date the source code was last updated, or
the most recent date an executable was updated. Again from the above table, the 32-bit executable
for Linux Xeon systems was created from Wind-US version 2.212, on June 25, 2007. Note that the
latest executable isn’t normally the same for all platform/CPU types.

The changes made to the code since its release are described in the “Source History” page,
following the above table. By examining the information in the “Source History” page, you can
determine whether or not the currently available executable is suitable for your particular problem.
If a change has been made that you need, but is not included in the currently available executable,
you can build the executable yourself by downloading and installing the build distribution.

2.2.1 Wind-US Application Distribution

To download the Wind-US application distribution, select “Wind-US Release 2.0” on the Wind
Projects Page (see Figure 2) by clicking on the button in the right-hand column, then click on
“Downloads” in the menu at the top of the page. You’ll be connected to the Wind-US Download
Page, like the one shown in Figure 3 for Dr. Wyn D. Ooser. The top part of this page, shown in
the figure, deals with downloading the application distribution, i.e., the scripts and pre-compiled
Wind-US executable. The bottom part deals with downloading the build distribution, and will be
discussed in the next section.

Select the desired computer and operating system by clicking on the appropriate entry in the
“Machine OS” list, and the desired CPU type by clicking on the appropriate entry in the “CPU” list.
Executables for multiple platforms and/or CPU types must be downloaded separately.

Note that the “Machine OS” and “CPU” types need not (necessarily) exactly match your system.
For example, the LINUX32-GLIBC2 3/XEON executable will probably run on any Linux system
with an x86-based CPU and with glibc version 2.3 installed. Symbolic links can be used in this
situation to “point to” the executable. See Section 3.1 for more details.

Next, select (or de-select) the appropriate entries from the list located just above the “Download”
button. For a UNIX (or Linux) system, new users should select the Wind-US executable, the PVM
run-time scripts, and the UNIX Wind-US scripts. Note that the UNIX scripts are not platform-
dependent, so when downloading executables for additional UNIX platforms and/or CPU types,
only the Wind-US executable need be selected.

After selecting the Machine/OS and CPU, and the items to download, click the “Download”
button. IVMS will package the selected items into a gzip’ed tar file, and prompt you for a file name,
which should end with the extension .tar.gz for UNIX systems. The whole process may take several
minutes, depending on the size of the items being downloaded and the load on the IVMS server, so
please be patient.

5

Wind-US Installation Guide

Figure 3: Wind-US Download Page, Application Distribution.

2.2.2 Wind-US Build Distribution

If a pre-compiled Wind-US executable is not available for the platform you’ll be running on, or
if you need a more recent version than is currently available, you’ll need to download the Wind-US
build distribution.

To download the Wind-US build distribution, simply click on the “Download” button in the
bottom part of the Wind-US Download Page, shown in Figure 4. IVMS will package the necessary
files into a gzip’ed tar file, and, if the “Package files for downloading later” button is not selected,
you’ll be prompted for the file name, which should end with the extension .tar.gz. The whole process
may take several minutes, depending on your Internet connection and the load on the IVMS server,
so please be patient.

Under some conditions, this process may time out before completion, resulting in a “Document
contains no data” error. The “Downloading later” option was added to solve this problem. If the
“Package files for downloading later” button is selected, IVMS will package the necessary files into a
gzip’ed tar file, and a “Get it here” link will appear in the IVMS “System Messages” window. Click
on it, and you’ll be prompted for the file name, and the process will continue as normal. You still
may get a “Document contains no data” error, but it may be ignored.

Occasionally, the “System Messages” window fails to refresh properly. If the “Get it here” link
fails to appear after a few minutes, manually reload the “System Messages” window. In Netscape,

6

2 Obtaining Wind-US and the Tools

Figure 4: Wind-US Download Page, Build Distribution.

this is done using a right-mouse click in the window, and selecting the “Reload” menu option. Some
users have also reported that clicking on the “Get it here” link occasionally results in them being
returned to the IVMS login screen. The cause of this problem is unknown.

2.3 Tools Projects

To download the various pre- and post-processing tools, first click on “Open Wind Tools” on
the IVMS opening page. That will display the Tools Projects Page, shown in Figure 5. Tools may
be downloaded as a group, either as executables in a “tools application distribution” or as source
code in a “tools build distribution”. Application and/or build distributions may also be downloaded
for individual tools. However, for the application distribution, it’s recommended that at least some
tools be downloaded as a group, which will include a tools installation script. The installation script
is not included when an application distribution is downloaded for an individual tool.

Note that at least one of the tools, either GMAN (see the GMAN User’s Guide) or MADCAP
(see the MADCAP User’s Guide) must be downloaded, since it’s required for setting boundary
condition types for input to Wind-US. Another, CFPOST (see the CFPOST User’s Guide), is very
useful in examining the results from Wind-US runs. Other tools are described in the Wind-US
Utilities Guide.

7

Wind-US Installation Guide

Figure 5: Tools Projects Page.

2.3.1 Tools Application Distribution

To download a tools application distribution for a group of tools, on the Tools Projects Page
(Figure 5) select“Tools Makefiles”by clicking on its button in the right-hand column near the bottom
of the page, then click on“Downloads” in the menu at the top of the page. You’ll be connected to the
Tools Makefiles Download Page, the top part of which is shown in Figure 6. The bottom part of the
page, not shown in the figure, deals with downloading the build distribution, and will be discussed
in the next section.

The executables in the tools distribution are available for a variety of systems. Select the desired

8

2 Obtaining Wind-US and the Tools

Figure 6: Tools Makefiles Download Page.

computer and operating system by clicking on the appropriate entry in the “Machine OS” list, and
the desired CPU type by clicking on the appropriate entry in the “CPU” list. Tools distributions for
multiple platforms and/or CPU types must be downloaded separately.

The tools to be included in the tools application distribution are chosen by clicking on the
buttons to the left of the tool names. Note that all the tools are selected by default, except for
CFPOST (cfpost pre in the list), GMAN (gmanpre), and MADCAP (Madcap production). These
are significantly larger than the other tools, and users with slower Internet connections may want to
download them separately from the Tools Projects Page.

9

Wind-US Installation Guide

After selecting the Machine/OS and CPU, and the tools to download, click the “Download”
button. IVMS will package the necessary files into a gzip’ed tar file, and prompt you for a file name,
which should end with the extension .tar.gz for UNIX systems. As with the other distributions, the
whole process may take several minutes, so please be patient.

2.3.2 Tools Build Distribution

If pre-compiled tools are not available for the platform you’ll be running on, or if you need more
recent versions than are currently available, you’ll need to download the tools build distribution.

To download the tools build distribution, simply click on the “Download” button at the bottom
of the Build Distribution section of the Tools Makefiles Download Page. IVMS will package the
necessary files into a gzip’ed tar file, and, if the “Package files for downloading later” button is not
selected, you’ll be prompted for the file name, which should end with the extension .tar.gz. The
whole process may take several minutes, depending on your Internet connection and the load on the
IVMS server, so please be patient.

Note that the procedure described in the previous section for selecting which tools to include
in the application distribution does not apply to the build distribution. The build distribution will
automatically include all the tools except for GMAN, CFPOST, and MADCAP. If it’s necessary to
build GMAN, CFPOST, or MADCAP, the build distribution for each of them must be downloaded
separately.

2.3.3 Individual Tools

The procedure for downloading an application or build distribution for an individual tool is
essentially the same as described previously for the application and build distributions for a group
of tools. On the Tools Projects Page (see Figure 5) select the desired tool by clicking on the button
for that tool in the right-hand column, then click on “Downloads” in the menu at the top of the
page. You’ll be connected to the Download Page for the selected tool.

To download the application distribution for that tool (i.e., the executable), select the desired
computer and operating system as usual, and then click the “Download” button. IVMS will package
the necessary files into a gzip’ed tar file, and prompt you for a file name, which should end with the
extension .tar.gz for UNIX systems.

To download the build distribution, simply click on the “Download” button at the bottom of the
Build Distribution section of the Download Page for that tool. IVMS will package the necessary files
into a gzip’ed tar file, and, if the “download later” option is not used, you’ll be prompted for the file
name, which should end with the extension .tar.gz.

10

3 Installing the Application Distributions

3.1 Installing on a UNIX System

After downloading the Wind-US and tools application distributions for the platforms to be used,
the recommended procedure to unpack and install them is as follows:

1. Put the gzip’ed tar files containing the Wind-US and tools application distributions into an ap-
propriate directory, such as wind download. This directory does not have to be the permanent
parent directory for the scripts and executables, but it can be.

2. In that directory, unpack the files by doing, for each file:

gunzip -c filename | tar xvf -

where filename is the file name, including the .tar.gz extension. Note that if application
distributions were downloaded for several different machines, all of the gzip’ed tar files should
be located in the same directory, and unpacked before proceeding to the actual installation.
Similarly, if application distributions for some tools have been downloaded individually, it’s
recommended that they also be unpacked before continuing. This will allow all the tools to be
installed in one step, rather than separately.

3. Install Wind-US first, by running the Install.appl script in the directory containing the ap-
plication distributions. When prompted, enter the parent directory where Wind-US is to be
installed. A wind subdirectory will be created directly below the directory you specify, and all
files will be installed in subdirectories below that. E.g., if you specify /usr/local as the parent
installation directory, the result will be a directory structure in /usr/local/wind.

The Install.appl script does not change any of your system or user files. It simply copies
the executables and scripts to the appropriate locations below the directory you specify, and
modifies the cfd.login and cfd.profile files in the application distribution accordingly.

4. Next, to finish the installation of Wind-US, csh and tcsh users must add the following line to
their .login file in their home directory.

source install directory/wind/bin/cfd.login

where install directory is the full path name for the parent installation directory you specified
in the previous step.

Similarly, sh, bash, and ksh users must add the following line to their .profile file in their home
directory.

. install directory/wind/bin/cfd.profile

This will cause the contents of cfd.login (or cfd.profile) to be executed each time you log in,
setting/modifying the following environment variables:

• CFDROOT, specifying the root location of the Wind-US executable(s) and scripts (i.e.,
install directory/wind)

• SYSTEM and SYSTEM_CPU, defining the type of system and CPU you’re using

• PATH, to include the locations of the newly-installed executables and scripts in your search
path

5. Log out and log back in, so that the cfd.login (or cfd.profile) script gets executed. (Or alterna-
tively, issue the command “source .login” (or “source .profile”) in your home directory.)

11

Wind-US Installation Guide

This is necessary in order to define the CFDROOT, SYSTEM, and SYSTEM_CPU environment vari-
ables, that the tools installation and usage also require.

6. Next install the tools, by running the Install.tools script in the directory containing the ap-
plication distributions. This step is exactly analogous to the one above for Wind-US. When
prompted, enter the parent directory where the tools are to be installed. While not strictly
necessary, it’s recommended that the tools be installed under the same parent directory as used
for Wind-US. A tools subdirectory will be created directly below the directory you specify, and
all files will be installed in subdirectories below that. E.g., if you specify /usr/local as the
parent installation directory, the result will be a directory structure in /usr/local/tools.

The Install.tools script does not change any of your system or user files. It simply copies
the executables and scripts to the appropriate locations below the directory you specify, and
modifies the tools.login and tools.profile files in the application distribution accordingly.

7. To finish the installation of the tools, csh and tcsh users must add the following line to their
.login file in their home directory.

source install directory/tools/bin/tools.login

where install directory is the full path name for the parent installation directory you specified
in the previous step.

Similarly, sh, bash, and ksh users must add the following line to their .profile file in their home
directory.

. install directory/tools/bin/tools.profile

This will cause the contents of tools.login (or tools.profile) to be executed each time you log
in, setting/modifying the following environment variables:

• TOOLSROOT, specifying the root location of the tools executable(s) and scripts (i.e., in-
stall directory/tools)

• PATH, to include the locations of the newly-installed executables and scripts in your search
path

8. Finally, log out and log back in again, so that the tools.login (or tools.profile) script gets
executed (or alternatively, issue the command “source .login” (or “source .profile”) in
your home directory), and the necessary environment variables get defined.

After completing the above steps, the directory structure will be similar to the example shown
below, where wind install is the directory specified in steps 3 and 6. (This example assumes that
32-bit executables were installed for a Linux system with glibc 2.3 and an Intel Xeon processor, and
SGI systems with R12000 and R14000 processors. The actual “system” and “CPU” directory names
for your installation will correspond to the choices you made for “Machine OS” and “CPU”when you
downloaded the application distribution(s), as described in Section 2.2.1.)

wind install/
wind/

LINUX32-GLIBC2.3/
XEON/

bin/
Wind-US executable

SGI32-IRIX6.5/
R12000/

bin/

12

3 Installing the Application Distributions

Wind-US executable
R14000/

bin/
Wind-US executable

bin/
Wind-US and PVM scripts
chemistry/

Chemistry data (.chm) files
pvm/

LINUX32-GLIBC2.3/
XEON/

PVM executables
SGI32-IRIX6.5/

R12000/
PVM executables

R14000/
PVM executables

tools/
LINUX32-GLIBC2.3/

XEON/
bin/

Tools executable(s)
SGI32-IRIX6.5/

R12000/
bin/

Tools executable(s)
R14000/

bin/
Tools executable(s)

bin/
Tools scripts

3.1.1 Using Symbolic Links for Similar Systems

As noted in Section 2.2.1, if an executable is not available for the exact type of system and CPU
you need to run on, a symbolic link can often be set up to specify that a different (but compatible)
executable should be used.

For example, most (all?) modern Linux distributions include glibc Version 2.3. Suppose your
SYSTEM environment variable is equal to LINUX32-RH9, but only executables for LINUX32-GLIBC2.3
are available. You can run the LINUX32-GLIBC2.3 executables by making LINUX32-RH9 a symbolic
link to the directory LINUX32-GLIBC2.3. I.e., in the wind, wind/pvm, and tools directories, do

ln -s LINUX32-GLIBC2.3 LINUX32-RH9

The resulting directory structure will be (starting from the example shown in the previous section,
here in abbreviated form):

wind install/
wind/

LINUX32-GLIBC2.3/
...

13

Wind-US Installation Guide

LINUX32-RH9 -> LINUX32-GLIBC2.3/
SGI32-IRIX6.5/

...
bin/

...
pvm/

LINUX32-GLIBC2.3/
...

LINUX32-RH9 -> LINUX32-GLIBC2.3/
SGI32-IRIX6.5/

...
tools/

LINUX32-GLIBC2.3/
XEON/

...
LINUX32-RH9 -> LINUX32-GLIBC2.3/
SGI32-IRIX6.5/

...
bin/

...

where the notation “LINUX32-RH9 -> LINUX32-GLIBC2.3/” is used to indicate that LINUX32-RH9 is
a symbolic link pointing to LINUX32-GLIBC2.3/.

Similarly, on SGI systems an executable built on an R14000 CPU will also run on an R16000
CPU, for example. In this case, to run the R14000 executables on R16000 systems, in the SGI32-
IRIX6.5 directories below wind, wind/pvm, and tools you would make R16000 a symbolic link to the
directory R14000.

ln -s R14000 R16000

The resulting directory structure will be (again starting from the example shown in the previous
section, here in even more abbreviated form):

wind install/
wind/

LINUX32-GLIBC2.3/
SGI32-IRIX6.5/

R12000/
R14000/
R16000 -> R14000/

bin/
pvm/

SGI32-IRIX6.5/
R12000/
R14000/
R16000 -> R14000/

tools/
LINUX32-GLIBC2.3/
SGI32-IRIX6.5/

R12000/
R14000/
R16000 -> R14000/

bin/

14

3 Installing the Application Distributions

3.1.2 Installation for NFS Access

If multiple users in an organization will be running Wind-US, it’s convenient to install the
Wind-US and tools executables below a parent directory that can be accessed by all the users via
NFS. This way, the location and method of accessing the executables will be the same on all user
machines, and they can be updated without impacting the user significantly. It is suggested that
one individual from an organization download the needed application distributions and serve as a
single point of contact for Wind-US.

When the scripts and executables are to be accessed via NFS, if the path name used by the user
to access the NFS-mounted file system is different from the actual directory name on the “host”
system, a slight variation of the above installation procedure is necessary. That’s because the user’s
environment variables CFDROOT and TOOLSROOT must define the NFS-mounted location of the wind
and tools subdirectories. Similarly, the lines users add to their .login or .profile files should specify
path names used to access the NFS-mounted file system.

NFS file systems are typically accessed using automount. As an example, assume that Wind-US
and the tools have been installed on a host workstation named wind machine, and that the parent
installation directory is /usr/local/wind nfs. On wind machine, that directory is exported read-only
to the “home” system, normally an individual’s workstation, of each Wind-US user. The user can
then access that directory via automount by adding “/net/wind machine” to the beginning of the
path name. E.g.,

cd /net/wind_machine/usr/local/wind_nfs

The cfd.login, etc., files on wind machine were copied to new files named cfd.nfs.login, etc.2

The definitions of CFDROOT and TOOLSROOT in cfd.nfs.login, etc., were modified to point to the
automount’ed location of the wind and tools subdirectories. I.e., in cfd.nfs.login CFDROOT is defined
as

setenv CFDROOT /net/wind_machine/usr/local/wind_nfs/wind

and in tools.nfs.login TOOLSROOT is defined as

setenv TOOLSROOT /net/wind_machine/usr/local/wind_nfs/tools

Finally, using the above example, csh and tcsh users accessing Wind-US via automount would
modify their .login file to add the lines

source /net/wind_machine/usr/local/wind_nfs/wind/bin/cfd.nfs.login
source /net/wind_machine/usr/local/wind_nfs/tools/bin/tools.nfs.login

and sh and ksh users would modify their .profile file to add the lines

. /net/wind_machine/usr/local/wind_nfs/wind/bin/cfd.nfs.profile

. /net/wind_machine/usr/local/wind_nfs/tools/bin/tools.nfs.profile

3.1.3 Installation for Parallel Execution on Distributed Systems

It should be noted that Wind-US does not need to be installed on each individual machine in order
to run in parallel mode using a network of distributed systems. The executables for all the different
types of systems and CPUs being used are installed only on the master system. The Wind-US run
scripts automatically take care of copying the appropriate Wind-US and PVM executables and files

2 This was done so that users logging directly onto wind machine could still access Wind-US as described in the
previous section.

15

Wind-US Installation Guide

to the systems being used, starting and stopping the message passing software, and cleaning up at
the end of the run. See the “Parallel Processing” section of the Wind-US User’s Guide for details.

3.2 Installing on a Windows System

Unfortunately, due to resource limitations, the NPARC Alliance cannot officially support a Win-
dows version of Wind-US. Nevertheless, application distributions for Windows may be available for
Wind-US and some of the tools. These executables will generally not be as current as those in
the supported Unix versions. The recommended installation procedure for Windows application
distributions is described below.

After downloading the gzip’ed tar files containing the Wind-US and tools application distributions
to some temporary directory:

1. Uncompress the gzip’ed tar file using some appropriate decompression software, such as WinZIP,
extracting all the files into the temporary directory. With WinZIP this is done by clicking on
the “Extract” button.

2. An“Install” link will appear in the temporary directory. Double click this to install the code(s).
A DOS window will open.

3. Specify where you want to install the code(s) and a default name for the location for running
applications. The applications directory is just the default and can be changed interactively
later.

4. Follow the instructions regarding modification of the autoexec.bat file, then reboot.

An icon should appear on your desktop. Double-clicking on it will start execution of Wind-US.

16

4 Installing the Build Distributions

If pre-compiled executables for Wind-US and/or the tools are not available for the platform you’ll
be running on, you’ll need to install the build distribution. This section describes the procedure for
UNIX systems.

4.1 Building Wind-US

Makefiles are distributed with the Wind-US build distribution for a variety of platform, operating
system, and CPU combinations, including:

• Convex
• Cray
• Hewlett-Packard

– Exemplar CSPP; PA-8000 processor
– HP-UX 11.x ; PA-8600 processor

• IBM RS6000; PC600 processor
• Linux

– glibc 2.3; Athlon, Xeon, Opteron, and X86 processors
– SUSE; Opteron processor

• Silicon Graphics IRIX 6.5; R4400, R5000, R8000, R10000, R12000, R14000, R16000 processors
• Sun Solaris 8 and 9; SPARC4U processor

If you need to build the code for a platform not listed above, you’ll need to first create the appro-
priate makefiles, using the existing ones as a starting point. See Section 6 for further information.
The NPARC Alliance User Support Team (nparc-support@arnold.af.mil, or (931) 454-7885) may
also be able to provide guidance when creating and naming new makefiles.

Assuming the appropriate makefiles exist, after downloading the gzip’ed tar files, the recom-
mended procedure is described below. Note that steps 4 through 6 can be avoided by installing a
Wind-US application distribution (even if it doesn’t include the pre-compiled executable), as de-
scribed in Section 3. The Wind-US build distribution is a complete package, however, and, using
the following procedure, a working system can be constructed from it alone.

1. Put the gzip’ed tar file containing the Wind-US build distribution into an appropriate directory.

2. In that directory, unpack the file by doing:

gunzip -c filename | tar xvf -

where filename is the file name, including the .tar.gz extension. This creates a directory
named wind-dev containing the Wind-US source code.

3. Check to see if the CFDROOT, SYSTEM, and SYSTEM_CPU environment variables have been set to
appropriate values, by doing

printenv CFDROOT
printenv SYSTEM
printenv SYSTEM_CPU

If all three are correctly set, skip ahead to step 7.

4. If you’re using the csh or tcsh shell, edit the file dir name/wind-dev/bin/cfd.login, where
dir name is the name of the directory used in step 1, to modify the definition of CFDROOT as
follows:

17

Wind-US Installation Guide

if (! "$?CFDROOT") then
#=BEGROOT=
setenv CFDROOT "path name/wind-dev"

#=ENDROOT=
endif

where path name is the full path name (starting with a “/”) of the directory used in step 1.

Similarly, bash, ksh, or sh users would edit the file dir name/wind-dev/bin/cfd.profile to modify
the definition of CFDROOT to:

if [! "$CFDROOT"] ; then
#=BEGROOT=
CFDROOT="path_name /wind-dev"

#=ENDROOT=
export CFDROOT

fi

5. Next, csh and tcsh users must edit the .login file in their home directory and add the following
line:

source path name/wind-dev/bin/cfd.login

where again path name is the full path name of the directory used in step 1. Similarly, bash,
ksh, and sh users must edit their .profile file and add the following line:

. path name/wind-dev/bin/cfd.profile

This causes the contents of the cfd.login (or cfd.profile) file to be executed automatically at
login time to set up the environment variables CFDROOT, SYSTEM, and SYSTEM_CPU, that are
required for installing and running Wind-US, and to modify your PATH to include the location
of the Wind-US executable.

6. At this point, log out and log back in to execute your .login or .profile file (depending on your
login shell). Alternatively, in your home directory execute (for csh and tcsh users)

source .login

or (for sh and ksh users)

. .profile

Either way, return to step 3.

7. Define the environment variable WIND_DEV as the location of the directory containing the top-
level Makefile. If in step 1 the Wind-US build distribution was unpacked in the directory
/usr/local/wind, for example, csh and tcsh users would do

setenv WIND_DEV /usr/local/wind/wind-dev

8. cd into the wind-dev directory

cd wind-dev

9. The default values in the configuration files should be sufficient to produce an executable on
most well-configured systems (assuming that compilers are installed). The primary exception
to this is Linux, which does not have a “default” Fortran 90/95 compiler. Another potential
problem is the location of the MPI libraries, which needs to be specified if you wish to use
MPI for parallel runs. To be safe, review the contents of the following files or parts of files,

18

4 Installing the Build Distributions

where SYSTEM and SYSTEM CPU correspond to the SYSTEM and SYSTEM_CPU environment
variables, paying special attention to the items noted below.

• Makefile.configure

– If you’re compiling on a multi-processor system with MPI message passing avail-
able, change the definition of USE_MPI from NO to YES. This will link in the MPI
libraries, allowing the use of MPI message passing for parallel processing. Note,
though, that because Wind-US uses dynamically-linked libraries, an executable cre-
ated with USE_MPI equal to YES will not run on multi-processor systems without
MPI.

– If you’ll never be running parallel jobs using PVM message passing, change the defi-
nition of USE_PVM from YES to NO.

– The value of PRECISION may be changed to make all Fortran variables single or double
precision. The default is a mix, with single precision for the mean flow solution and
boundary conditions, and double precision for chemistry data, right-hand-side data,
grid coordinates, and grid metrics.

• source/Makefile.user

• source/makefiles/Makefile.include.SYSTEM.SYSTEM CPU.xxx, where xxx corresponds
to opt, dbx, pure, or check.

– Check the definition of CPP, which is the full path name for the C pre-processor cpp,
to make sure it is correct for your system. You can locate cpp using the whereis
command, at least on SGI and Sun systems.

whereis -b cpp

– For Linux systems, you will most likely have to change the definitions related to the
Fortran and C compilers being used (i.e., the variables ABI, FC, F90, LD, etc.) These
lines should be commented/uncommented as needed for your system, but additional
changes may also be necessary or desired.

– If you’re compiling on a multi-processor system with MPI message passing, check
the definition of MPILIBS, and modify it if necessary to use a different version or a
non-standard location.

– If your system doesn’t support the Fortran long integer data type, add “-DNOFLONG”
(without the quotes) to the definition of WINDDEFS. Errors in the compilation of
mem management module.f90 about an ambiguous definition for the generic inter-
faces alloc and dealloc, involving the specific interfaces for allockindlong_1 and
allockindint_1, etc., are an indication that “-DNOFLONG” is needed.

10. From the wind-dev directory, run make to create all the required libraries and executables for
running Wind-US. To capture the output from make in the file make.log for later examination
if something goes wrong, in addition to displaying it at the terminal, csh and tcsh users should
do

make opt |& tee make.log

and sh and ksh users should do

make opt 2>&1 | tee make.log

19

Wind-US Installation Guide

11. If you have a previous installation of Wind-US that you wish to update (i.e., CFDROOT points to
some other directory than the one you are building from), you will need to install the Wind-US
amd PVM executables. To do that, issue the commands

make install
make install_scripts
make copy_pvm

The first two commands copy the Wind-US executable to $CFDROOT/SYSTEM/CPU/bin,
and the scripts to $CFDROOT/bin. The third copies the PVM executables and libraries to
$CFDROOT/pvm/lib/SYSTEM/CPU, some PVM include files to $CFDROOT/pvm/include,
and PVM scripts to $CFDROOT/pvm/lib. The parameters SYSTEM and CPU correspond
to the SYSTEM and SYSTEM_CPU environment variables, respectively.

12. If this is a new installation, it would probably be best to log out and log back in before running
Wind-US. This executes the shell start-up scripts, modifying the PATH environment variable
to include the newly-created location for the Wind-US executable.

4.2 Building the Tools

Makefiles are distributed with the tools build distributions for many of the same platforms
supported by the Wind-US build distribution. Unlike the Wind-US build distribution, in order to
obtain the source for all the tools several downloads are required. The smaller tools are all bundled
together and may be acquired from the “Downloads” page of the “Tools Makefiles” project. GMAN,
CFPOST, and MADCAP are normally downloaded separately from their respective “Downloads”
pages. Note that the Project Names for these are“gmanpre”, “cfpost pre”, and“Madcap production”,
respectively.

Each build distribution is designed to be a completely independent package, so that the tools can
be built without requiring any additional files from IVMS.3 Thus, one could have separate directory
trees for the Wind-US build distribution and each of the tools build distributions. This would lead
to a great deal of duplication, however. Therefore, the build distributions are designed to overlay
one another. The following instructions assume that all the tools are being built in the same tree.

1. Place all the source packages in the same directory. If you have already built Wind-US, the
directory above wind-dev is the best place, in order to minimize duplication.

2. Unpack the archives for the tools you wish to compile by doing:

gunzip -c filename | tar xvf -

This places the source for the tools in directories under wind-dev/tools-dev.

3. Verify that the CFDROOT, SYSTEM, and SYSTEM_CPU environment variables, are correctly defined,
as described in steps 3–6 in Section 4.1.

4. Check to see if the TOOLSROOT environment variable is properly set, by doing:

printenv TOOLSROOT

If it is, skip ahead to step 8.

5. If you’re using the csh or tcsh shell, edit the file dir name/wind-dev/tools-dev/bin/tools.login,
where dir name is the name of the directory used in step 1, to modify the definition of TOOL-
SROOT as follows:

3There are some exceptions to this, such as CFPOST, described below in step 10.

20

4 Installing the Build Distributions

if (! "$?TOOLSROOT") then
#=BEGROOT=
setenv TOOLSROOT "path name/wind-dev/tools-dev"

#=ENDROOT=
endif

where path name is the full path name (starting with a “/”) of the directory used in step 1.

Similarly, bash, ksh, or sh users would edit the file dir name/wind-dev/tools-dev/bin/tools.profile
to modify the definition of TOOLSROOT to:

if [! "$TOOLSROOT"] ; then
#=BEGROOT=
TOOLSROOT="path name/wind-dev/tools-dev"

#=ENDROOT=
export TOOLSROOT

fi

6. Next, csh and tcsh users must edit the .login file in their home directory and add the following
line:

source path name/wind-dev/tools-dev/bin/tools.login

where again path name is the full path name of the directory used in step 1. Similarly, bash,
ksh, and sh users must edit their .profile file and add the following line:

. path name/wind-dev/tools-dev/bin/tools.profile

This causes the contents of the tools.login (or tools.profile) file to be executed automatically at
login time to set up the environment variable TOOLSROOT, and to modify your PATH to include
the location of the tools executables.

7. At this point, log out and log back in to execute your .login or .profile file (depending on your
login shell). Alternatively, in your home directory execute (for csh and tcsh users)

source .login

or (for sh and ksh users)

. .profile

Either way, return to step 4.

8. Define the environment variable WIND_DEV as the location of the directory containing the
top-level Makefile. If in step 1 the tools build distributions were unpacked in the directory
/usr/local/wind, for example, csh and tcsh users would do

setenv WIND_DEV /usr/local/wind/wind-dev

9. Most systems other than Linux should be able to use the default values in the configuration
files without problem. On Linux systems, it is likely that the definitions related to the Fortran
and C compilers will have to be changed. To be safe, check the following files to be sure
they contain information that is appropriate for your system. (See the notes for step 9 in
Section 4.1.)

• Makefile.configure

• source/makefiles/Makefile.include.SYSTEM.SYSTEM CPU.opt

• source/makefiles/pvm conf/SYSTEM.SYSTEM CPU.def.opt

21

Wind-US Installation Guide

• tools-dev/Makefile

• tools-dev/Makedefs.SYSTEM

• If GMAN is being built: tools-dev/gmanpre/Makedefs.SYSTEM

• If CFPOST is being built: tools-dev/cfpost pre/Makedefs.SYSTEM

• If MADCAP is being built: tools-dev/libmadcap/Makedefs.SYSTEM and
tools-dev/madcapprod/Makedefs.SYSTEM

• If GMAN, CFPOST, or MADCAP is being built: tools-dev/libmdgl/SYSTEM.mkf

10. In the wind-dev directory, run make to create all the required libraries and executables for all
the tools for which you have installed source. To capture the output from make in the file
make tools.log for later examination if something goes wrong, in addition to displaying it at
the terminal, csh and tcsh users should do

make all_tools |& tee make_tools.log

and sh and ksh users should do

make all_tools 2>&1 | tee make_tools.log

You can also compile tools individually, by doing

make tool name

where tool name is the name of the tool. Note that the names to be used for GMAN, CFPOST,
and MADCAP are gmanpre, cfpost pre, and madcapprod, respectively.

If CFPOST is being built individually, the MADCAP library must be present, either as source
code or as a previously-compiled object library. This can be satisfied in a couple of different
ways.

• If MADCAP is also to be built, unpack it in step 2 at the same time as the archives for
the other tools that are being built.

• If MADCAP is not being built, download the MADCAP library source code from IVMS
(the Project Name is “Madcap production Library”), and unpack it, in the same directory
as the rest of the tools, before building CFPOST.

11. If you have a previous installation of the tools that you wish to update (i.e., TOOLSROOT points
to some other directory than the one you are building from), you will need to install the tools
executables by doing

make install_tools

This copies the tools executables to $TOOLSROOT/SYSTEM/CPU/bin, where SYSTEM and
CPU correspond to the SYSTEM and SYSTEM_CPU environment variables, as described in step
11 in Section 4.1.

12. If this is a new installation, it would probably be best to log out and log back in again
before running any of the tools. This executes the shell start-up scripts, modifying the PATH
environment variable to include the newly-created location for the tools executables.

Note that the build procedure for the tools is somewhat less mature than the Wind-US build pro-
cess. Please report problems to the NPARC Alliance support team at nparc-support@arnold.af.mil
or (931) 454-7885.

22

5 Installing and Running the Build Distributions on the NAS

Pre-compiled executables for Wind-US and/or the tools are not available for the NASA Advanced
Supercomputing (NAS) systems: columbia and pleiades. User’s must install the build distribution
into their local directory. This section describes the procedure for doing this.

5.1 Security Issues on the NAS

User’s are reminded that they are responsible for protecting the dissemination of Wind-US,
particularly on a shared computer resource like the NAS. It is therefore recommended that users
restrict the access permissions on their NAS home and nobackup directories to prevent access from
other users. If this is not already the default behavior, one can use the following commands.

• To restrict access to an existing file or directory use the command:
chmod go-rwx filename

• To restrict access to all future files and directories created during the current session use the
command:

umask 077
• Depending on which linux shell is being used, the umask command above can be placed in the

$HOME/.login or $HOME/.profile login scripts to apply to future sessions.

5.2 Storage Issues on the NAS

Storage space on NAS is split between a rather limited (8 GB) $HOME directory and a larger
(200 GB) /nobackup/$USER directory. Most users install Wind-US into their home directory and
submit jobs from their nobackup directory. Offline tape storage is available by transferring files
to the machine called lou. Please see the NAS website (http://www.nas.nasa.gov/) for additional
details.

5.3 Computational Resources on the NAS

The NAS computing cluster is comprised of various computing nodes, each of which contains a
different number and type of core processors. The user can select which nodes to use by specifying
the model name within the PBS script. The default option for most queues is Westmere.

Because each processor type has a different computational efficiency, NAS charges for their use
via a Standard Billing Unit (SBU). In this scheme, use of faster computing nodes incurs a larger SBU
cost. Each submitted job is is given exclusive access to the requested nodes. The user is charged for
using each node, even if the job does not utilize all of the available processors. To make the most of
their allotted time on NAS, users should try to fully utlize each computing node. The table below
summarizes the available computing resources.

For more information, visit:

• http://www.nas.nasa.gov/hecc/support/kb/Resources-Request-Examples_188.html

• http://www.nas.nasa.gov/hecc/support/kb/Pleiades-Configuration-Details_77.html

23

http://www.nas.nasa.gov/hecc/support/kb/Resources-Request-Examples_188.html
http://www.nas.nasa.gov/hecc/support/kb/Pleiades-Configuration-Details_77.html

Wind-US Installation Guide

Table 1: NAS Computing Resources

Processor Type Model Name SBU/node CPUs/node RAM(GB)/node
Westmere wes 1.00 12 22.5

Sandy Bridge san 1.82 16 30
Ivy Bridge ivy 2.52 20 62
Haswell has 3.34 24 122

5.4 Building Wind-US on the NAS

1. Download the Wind-US Build Distribution from IVMS.
This distribution contains all of the necessary run scripts and source files needed to compile
and run Wind-US.

• Login to IVMS.

• Select the Projects tab on the top of the page.

• Select Open Wind Development to reveal the list of Wind releases.

• Select the Wind-US version via the push-button in the right hand column.

• Select the Downloads tab on the top of the page.

• Go to the bottom of the Downloads page and download the Wind-US Build Distribution.
It may take a few seconds before the Save File dialog appears. When it does, save the
file as:

windus.build.tar.gz

2. Transfer the build bundle to NAS (columbia or pleiades).

• Put the windus.build.tar.gz file in the (new) directory $HOME/WINDUS where the source
will be installed. You should now have:

$HOME/WINDUS/windus.build.tar.gz

3. Unpack the build bundle on NAS.

cd $HOME/WINDUS
gunzip -c windus.build.tar.gz | tar xvf -

This should extract everything to the new subdirectory:

$HOME/WINDUS/wind-dev

4. Update the NAS login scripts.
Users of csh and tcsh shells must edit the $HOME/.cshrc or $HOME/.tcshrc file respectively
and make sure the following lines appear:

module load comp-intel/2013.5.192
module load mpi-sgi/mpt.2.11r13
setenv CFDROOT "$HOME/WINDUS/wind-dev"
setenv WIND_DEV "$HOME/WINDUS/wind-dev"
source $HOME/WINDUS/wind-dev/bin/cfd.login

Similarly, bash, ksh, and sh users must edit their $HOME/.profile file and add make sure the
following lines appear:

24

5 Installing and Running the Build Distributions on the NAS

module load comp-intel/2013.5.192
module load mpi-sgi/mpt.2.11r13
CFDROOT = "$HOME/WINDUS/wind-dev" ; export CFDROOT
WIND_DEV = "$HOME/WINDUS/wind-dev" ; export WIND_DEV
. $HOME/WINDUS/wind-dev/bin/cfd.profile

This sets up the Intel Fortran/C compilers, loads SGI’s MPI message passing toolkit, and
causes the contents of the cfd.login (or cfd.profile) file to be executed automatically for each
new shell instance. The environment variables CFDROOT, WIND_DEV, SYSTEM, and SYSTEM_CPU,
that are required for installing and running Wind-US will also be set, and the PATH will be
modified to include the location of the Wind-US executable directories.

5. Test the NAS login scripts.
At this point, log out and log back in. Check to see if the environment variables have been set
to appropriate values, by doing:

printenv CFDROOT
printenv WIND_DEV
printenv SYSTEM
printenv SYSTEM_CPU
ifort --version
icc --version
which mpiexec

They should have values similar to:

$HOME/WINDUS/wind-dev
$HOME/WINDUS/wind-dev
LINUX64-GLIBC2.11
XEON
ifort (IFORT) 13.1.3 20130607
icc (ICC) 13.1.3 20130607
/nasa/sgi/mpt/2.11r13/bin/mpiexec

(Note that $HOME may be expanded to your full home directory path.) If the variables are not
set, or not set correctly, go back to step 4 and try again.

6. Move into the Wind-US build directory.

cd $WIND_DEV

This should put you in the $HOME/WINDUS/wind-dev directory.

7. Configure the makefiles.
If you plan to build both Wind-US and the tools, then follow the instructions below for
unpacking the tools distribution before making any changes to the makefiles. The reason for
this is that the tools distribution also contains a copy of the makefiles and will overwrite any
changes you might make here.

The default values in the configuration files should be sufficient to produce an executable. To
be safe, review the contents of the following files or parts of files, where SYSTEM and SYS-
TEM CPU correspond to the SYSTEM and SYSTEM_CPU environment variables, paying special
attention to the items noted below.

• Makefile.configure

– Set USE_MPI=YES.

25

Wind-US Installation Guide

– Set USE_PVM=YES.

– Set BUILD_PVM=YES.

– The value of PRECISION may be changed to make all Fortran variables single or double
precision. The default is a mix, with single precision for the mean flow solution and
boundary conditions, and double precision for chemistry data, right-hand-side data,
grid coordinates, and grid metrics.

• source/Makefile.user

– Only examine this file if you experience problems during the build.

• source/makefiles/Makefile.include.SYSTEM.SYSTEM CPU.opt

– This file contains the compiler optimizations for the specific system being used.

– If this makefile does not exist, you will need to create it. Usually the easiest way to
do so is to copy and modify one of the existing files. For example:

cp -p source/makefiles/Makefile.include.LINUX64-GLIBC2.4.XEON.opt
source/makefiles/Makefile.include.LINUX64-GLIBC2.11.XEON.opt

– Check the definition of CPP, which is the full path name for the C pre-processor cpp,
to make sure it is correct. You can locate cpp using:

whereis -b cpp

– You may need to change the definitions related to the Fortran and C compilers being
used (i.e., the variables ABI, FC, F90, LD, etc.). There is coding in the Linux makefiles
for various Fortran and C compilers. These lines should be commented/uncommented
as needed, but additional changes may also be necessary or desired. At the time of
this writing, the following Intel 13.1.3 compiler settings were used:

ABI= -Zp8 -pc80 -fp-model strict -fno-alias -heap-arrays \
-fpic -traceback

FC= ifort
FCOMP= $(FC) $(ABI) -pad -ip -DINTEL
FFHOP= -O3 -xSSE4.2 -axAVX
FFOPT= -O3 -xSSE4.2 -axAVX
FFLOW= -O1
FFNOP= -O0

F90= ifort $(ABI) -pad -ip -DINTEL
F90FHOP= -O3 -xSSE4.2 -axAVX
F90FOPT= -O3 -xSSE4.2 -axAVX
F90FLOW= -O1
F90FNOP= -O0

CC= icc
CCOMP= $(CC) $(ABI)
ANSI= -ansi
POSIX= -D_POSIX_SOURCE
CFOPT= -O2 -xSSE4.2 -axAVX

CCP= icpc $(ABI)

26

5 Installing and Running the Build Distributions on the NAS

CPFOPT= -O2 -xSSE4.2 -axAVX

LD= ifort $(ABI) -O3 -ip -pad -xSSE4.2 -axAVX

The compiler flags -xSSE4.2 and -axAVX are specific optimizations for the Westmere,
Sandy Bridge, and Ivy Bridge processors that set the baseline code path and alternate
optimized code paths respectively. For more information, visit:

∗ http://www.nas.nasa.gov/hecc/support/kb/Recommended-Compiler-Options_
99.html

– If your preferred compiler doesn’t support the Fortran long integer data type, add
“-DNOFLONG” (without the quotes) to the definition of WINDDEFS. Errors in the compi-
lation of mem management module.f90 about an ambiguous definition for the generic
interfaces alloc and dealloc, involving the specific interfaces for allockindlong_1
and allockindint_1, etc., are an indication that “-DNOFLONG” is needed.

– If necessary, specify the location of the MPI libraries.

MPILIBS= -L/nasa/sgi/mpt/2.11r13/lib -lmpi

The SGI MPI module makes available an mpif90 command that automatically passes
the library information to the Intel compiler through the LD_LIBRARY_PATH, LI-
BRARY_PATH, and F_PATH environment variables. However, all code compiled with
this command will include the MPI libraries, even if they are not needed. This has
been found to cause problems with some of the tools to be compiled below. Using
ifort as the compiler directive and setting the MPILIBS makefile variable ensures
that the MPI libraries will only be included in the Wind-US executable.

8. Compile the source code.

• Create a PBS script ($WIND DEV/make.wind.pbs) to compile Wind-US. For csh and
tcsh use the following:

#PBS -lselect=1:ncpus=4,walltime=2:00:00
cd $PBS_O_WORKDIR
echo "CFDROOT = $CFDROOT" |& tee make.wind.log
echo "WIND_DEV = $WIND_DEV" |& tee -a make.wind.log
echo "SYSTEM = $SYSTEM" |& tee -a make.wind.log
echo "SYSTEM_CPU = $SYSTEM_CPU" |& tee -a make.wind.log
cd $WIND_DEV
make opt |& tee -a make.wind.log

For sh and ksh use the above, but replace “|&” with “2&>1 |”.

• Submit the job to compile the code.

cd $WIND_DEV
qsub -q devel make.wind.pbs

This may take roughly 30 minutes once your job begins running. You can use the qstat
command to check on the status.

• If Wind-US compiled successfully you should now have:

$WIND_DEV/$SYSTEM/$SYSTEM_CPU/bin/Wind-USalpha.exe

27

http://www.nas.nasa.gov/hecc/support/kb/Recommended-Compiler-Options_99.html
http://www.nas.nasa.gov/hecc/support/kb/Recommended-Compiler-Options_99.html

Wind-US Installation Guide

If the executable was not produced, then examine the log file ($WIND DEV/make.wind.log)
for compilation errors.

9. Install the executables and scripts.
If you have a previous installation of Wind-US that you wish to update (i.e., CFDROOT points
to some directory other than the WIND_DEV you are building from), you will need to install the
Wind-US and PVM executables. To do that, issue the commands

make install
make install_scripts
make copy_pvm

This will:

• Copy the Wind-US executable to: $CFDROOT/$SYSTEM/$SYSTEM_CPU/bin

• Copy the Wind-US run scripts to: $CFDROOT/bin

• Copy the PVM executables and libraries to: $CFDROOT/pvm/$SYSTEM/$SYSTEM_CPU

• Copy the PVM include files to: $CFDROOT/pvm/include

• Copy the PVM scripts to: $CFDROOT/pvm/lib

10. If this is a new installation, it would probably be best to log out and log back in before running
Wind-US. This executes the shell start-up scripts, modifying the PATH environment variable
to include the newly-created location for the Wind-US executable.

11. Run the wind script.

wind

The new executable should appear in the list of available versions.

Select the desired version
0: Exit wind
1: Wind-US Alpha

See Section 5.6 for running Wind-US on the NAS.

5.5 Building the Tools on the NAS

Unlike the Wind-US build distribution, in order to obtain the source for all the tools several
downloads are required. The smaller tools are all bundled together and may be acquired from the
“Downloads” page of the “Tools Makefiles” project. GMAN, CFPOST, and MADCAP are normally
downloaded separately from their respective “Downloads” pages. Note that the Project Names for
these are “gmanpre”, “cfpost prod”, and “Madcap production”, respectively. The instructions below
only describe how to install the smaller utilities and CFPOST on NAS, since GMAN and MADCAP
are more graphical in nature and typically not used over a remote connection.

Each build distribution is designed to be a completely independent package, so that the tools can
be built without requiring any additional files from IVMS.4 Thus, one could have separate directory
trees for the Wind-US build distribution and each of the tools build distributions. This would lead
to a great deal of duplication, however. Therefore, the build distributions are designed to overlay
one another. The following instructions assume that all the tools are being built in the same tree.

4There are some exceptions to this, such as CFPOST, described below.

28

5 Installing and Running the Build Distributions on the NAS

Note that the build procedure for the tools is somewhat more complicated than the Wind-US
build process. Please report problems to the NPARC Alliance User Support Team at nparc-support@
arnold.af.mil or (931) 454-7885.

1. Download the source files.
The Tools Makefiles contains the source code for most of the smaller utilities.

• Login to IVMS.

• Select the Projects tab on the top of the page.

• Select Open Wind Tools to reveal the list of tools.

• Select Tools Makefiles via the push-button in the right hand column.

• Select the Downloads tab on the top of the page.

• Go to the bottom of the downloads page and download the Tools Makefiles Build Distri-
bution. It may take a few seconds before the Save File dialog appears. When it does save
the file as:

tools.build.tgz

The CFPOST source code must be downloaded separately.

• Login to IVMS.

• Select the Projects tab on the top of the page.

• Select Open Wind Tools to reveal the list of tools.

• Select cfpost prod via the push-button in the right hand column.

• Select the Downloads tab on the top of the page.

• Go to the bottom of the downloads page and download the Tools Makefiles Build Distri-
bution. It may take a few seconds before the Save File dialog appears. When it does save
the file as:

cfpost_prod.build.tar.gz

Note that CFPOST requires the Madcap library files, which should be included in this cfpost
build bundle.

Some of the tools require lua and cgnslib header files and/or libraries.

• Download lua (4.0.1) from http://www.lua.org/ftp/lua-4.0.1.tar.gz and save as:

lua.4.0.1.tar.gz

Due to changes in the API, newer versions of lua will not work with the Wind-US tools!!!

• Download cgnslib (2.5.5) from https://cgns.github.io/download.html and save as:

cgnslib.2.5.5.tar.gz

Newer versions of cgnslib may also work.

2. Transfer the source code to NAS (columbia or pleiades).

• Put the *.tar.gz files in the (existing) directory $HOME/WINDUS where the source will
be installed. You should now have:

29

Wind-US Installation Guide

$HOME/WINDUS/tools.build.tar.gz
$HOME/WINDUS/cfpost_prod.build.tar.gz
$HOME/WINDUS/lua.4.0.1.tar.gz
$HOME/WINDUS/cgnslib.2.5.5.tar.gz

3. Unpack the source code on NAS.
Note that this will overwrite any changes you made to the Wind-US makefiles!

cd $HOME/WINDUS
gunzip -c tools.build.tar.gz | tar xvf -
gunzip -c cfpost_prod.build.tar.gz | tar xvf -
gunzip -c lua.4.0.1.tar.gz | tar xvf -
gunzip -c cgnslib.2.5.5.tar.gz | tar xvf -

This should extract everything to the following subdirectories:

$HOME/WINDUS/wind-dev/tools-dev/*
$HOME/WINDUS/wind-dev/tools-dev/cfpost_prod
$HOME/WINDUS/lua-4.0.1
$HOME/WINDUS/cgns_2.5

4. Update the NAS login scripts.
Users of csh and tcsh shells must edit the $HOME/.cshrc or $HOME/.tcshrc file respectively
and make sure the following lines appear:

module load comp-intel/2013.5.192
module load mpi-sgi/mpt.2.11r13
setenv CFDROOT "$HOME/WINDUS/wind-dev"
setenv WIND_DEV "$HOME/WINDUS/wind-dev"
setenv TOOLSROOT "$HOME/WINDUS/wind-dev/tools-dev"
source $HOME/WINDUS/wind-dev/bin/cfd.login
source $HOME/WINDUS/wind-dev/tools-dev/bin/tools.login

Similarly, bash, ksh, and sh users must edit their $HOME/.profile file and make sure the
following lines appear:

module load comp-intel/2013.5.192
module load mpi-sgi/mpt.2.11r13
CFDROOT = "$HOME/WINDUS/wind-dev" ; export CFDROOT
WIND_DEV = "$HOME/WINDUS/wind-dev" ; export WIND_DEV
TOOLSROOT = "$HOME/WINDUS/wind-dev/tools-dev" ; export TOOLSROOT
. $HOME/WINDUS/wind-dev/bin/cfd.profile
. $HOME/WINDUS/wind-dev/tools-dev/bin/tools.profile

This causes the contents of the tools.login (or tools.profile) file to be executed automatically
at login time to set up the environment variable TOOLSROOT that is required for installing
and running the Wind-US tools, and to modify PATH to include the location of the proper
executable.

5. Test the NAS login scripts.
At this point, log out and log back in. Check to see if the environment variables have been set
to appropriate values, by doing:

printenv CFDROOT
printenv WIND_DEV
printenv TOOLSROOT

30

5 Installing and Running the Build Distributions on the NAS

printenv SYSTEM
printenv SYSTEM_CPU
ifort --version
icc --version

They should have values similar to:

$HOME/WINDUS/wind-dev
$HOME/WINDUS/wind-dev
$HOME/WINDUS/wind-dev/tools-dev
LINUX64-GLIBC2.11
XEON
ifort (IFORT) 13.1.3 20130607
icc (ICC) 13.1.3 20130607

(Note that $HOME may be expanded to your full home directory path.)

If the variables are not set, or not set correctly, go back to step 4 and try again.

6. Compile Lua.

cd $HOME/WINDUS/lua-4.0.1
make

This should create the following files:

$HOME/WINDUS/lua-4.0.1/bin/lua
$HOME/WINDUS/lua-4.0.1/bin/luac
$HOME/WINDUS/lua-4.0.1/lib/liblua.a
$HOME/WINDUS/lua-4.0.1/lib/liblualib.a

7. Compile the CGNS library.

cd $HOME/WINDUS/cgnslib_2.5
./configure --prefix=$HOME/WINDUS/cgnslib_2.5 --with-system=LINUX64 \

--enable-64bit
make SYSTEM=LINUX64
mkdir include
mkdir lib
make install

This should create the following files:

$HOME/WINDUS/cgnslib_2.5/include/cgnslib.h
$HOME/WINDUS/cgnslib_2.5/include/cgnslib_f.h
$HOME/WINDUS/cgnslib_2.5/include/cgnswin_f.h
$HOME/WINDUS/cgnslib_2.5/lib/libcgns.a

8. Move into the Wind-US build directory.

cd $WIND_DEV

This should put you in the $HOME/WINDUS/wind-dev directory.

9. Configure the makefiles.

Review the contents of the following files or parts of files, where SYSTEM and SYSTEM CPU
correspond to the SYSTEM and SYSTEM_CPU environment variables, paying special attention to
the items noted below.

31

Wind-US Installation Guide

• Makefile.configure

– Make the modifications listed above in the instructions for building Wind-US on NAS.

• source/makefiles/Makefile.include.SYSTEM.SYSTEM CPU.opt

– Make the modifications listed above in the instructions for building Wind-US on NAS.

– Comment out the explicit static and shared library settings:

#TOOLS_STATLIB= -static
#TOOLS_SHARLIB= -shared

The default behavior of the Intel compiler is to use shared libraries.

– Provide the proper locations of Tcl, Lua, and CGNS:

TOOLS_TCLLIBS= -L/usr/lib64 -ltcl8.5
TOOLS_LUALIBS= -L$(HOME)/WINDUS/lua-4.0.1/lib -llua -llualib
TOOLS_CGNSLIBS= -L$(HOME)/WINDUS/cgnslib_2.5/lib -lcgns
TCL_INCLUDE= $(INCCMD)/usr/include
LUA_INCLUDE= $(INCCMD)$(HOME)/WINDUS/lua-4.0.1/include
CGNS_INCLUDE= $(INCCMD)$(HOME)/WINDUS/cgnslib_2.5/include

– Provide the proper locations of the Intel libraries:

TOOLS_OSLIBS= -L/nasa/intel/Compiler/2013.5.192/lib/intel64 \
-lifcore -lirc -limf -lpthread

TOOLS_CPPLIBS= -L/nasa/intel/Compiler/2013.5.192/lib/intel64 \
-lifcore -lirc -limf

MADCAP_OSLIBS= -L/nasa/intel/Compiler/2013.5.192/lib/intel64 \
-lifcore -lcxa -lunwind -lpthread -lstdc++

Depending on which version of the Intel compiler you choose, the library files may
be in a different subdirectory below /nasa/intel. These library paths might already
be present in the enviroment variables.

• source/makefiles/pvm conf/SYSTEM.SYSTEM CPU.def.opt

• tools-dev/Makefile

• tools-dev/Makedefs.SYSTEM

• If GMAN is being built: tools-dev/gmanpre/Makedefs.SYSTEM

• If CFPOST is being built: tools-dev/cfpost prod/Makedefs.SYSTEM

• If MADCAP is being built: tools-dev/libmadcap/Makedefs.SYSTEM and
tools-dev/madcapprod/Makedefs.SYSTEM

• If GMAN, CFPOST, or MADCAP is being built: tools-dev/libmdgl/SYSTEM.mkf

– If this makefile does not exist, you will need to create it. Usually the easiest way to
do so is to copy and modify one of the existing files. For example:

cp -p tools-dev/libmdgl/LINUX64-GLIBC2.7.mkf
tools-dev/libmdgl/LINUX64-GLIBC2.11.mkf

– Use the settings for the Intel compiler, if they are not already the default.

32

5 Installing and Running the Build Distributions on the NAS

ABI= -mcmodel=medium -pad -pc80 -fp-model strict -fno-alias
CC= icc
CFLOPT=

Note that CFLOPT is defined to be empty.

10. Compile the tools source.

On NAS, the front end node has the openmotif-devel-* package installed, which makes available
a number of header files needed to compile the Wind-US tools. The worker nodes only have
the library files installed. This means that the tools must be compiled on the front end node.
So, instead of using a batch script like that to compile Wind-US, simply compile the tools from
the command line.

Make sure you are in the build directory.

cd $WIND_DEV

Next, csh and tcsh users should do

make all_tools |& tee make_tools.log

while sh and ksh users should do

make all_tools 2>&1 | tee make_tools.log

Tools can also be compiled individually, by doing

make tool_name

where tool name is the name of the tool. Note that the names to be used for GMAN, CFPOST,
and MADCAP are gmanpre, cfpost prod, and madcapprod, respectively.

After compilation is complete, the following programs should appear in directory
$WIND DEV/$SYSTEM/$SYSTEM CPU/bin

USintrpltQ.exe cfreset_iter.exe gpro.exe rplt3d
adfedit cfrevert.exe gridvel.exe scan
cfappend.exe cfsequence.exe icees terp
cfaverage.exe cfspart jormak.exe thplt.exe
cfbeta.exe cfsplit.exe lstvars timplt.exe
cfcnvt cfsubset.exe mpigetnzone tmptrn.exe
cfcombine.exe cfunsequence.exe newtmp usplit-hybrid.exe
cflistnum cfview.exe npair windpar.exe
cfnav.exe chmgr.exe parcnl wnparc
cfpart.exe decompose.exe readcf wplt3d
cfpost_prod.exe delvars resplt.exe writcf
cfreorder.exe fpro rnparc

Depending on the size of the array parameters requested, the thplt.exe executable might
not get created with the default memory model. If it was not created, then edit the file
$WIND DEV/source/makefiles/Makefile.include.$SYSTEM.$SYSTEM CPU.opt to use the fol-
lowing ABI settings:

ABI= -Zp8 -pc80 -fp-model strict -fno-alias -heap-arrays \
-mcmodel medium -traceback

and recompile just that tool. From the build directory, remove the old object file.

33

Wind-US Installation Guide

cd $WIND_DEV
rm -f OBJECTS/$SYSTEM/$SYSTEM_CPU/thplt.o

Next, csh and tcsh users should do

make thplt |& tee make_thplt.log

while sh and ksh users should do

make thplt 2>&1 | tee make_thplt.log

Check $WIND DEV/$SYSTEM/$SYSTEM CPU/bin to confirm that thplt.exe was created.

11. In order for the tool scripts to locate the executables, they must be installed in the proper
location. To install the executables, do:

make install_tools

This copies the tools executables to $TOOLSROOT/$SYSTEM/$SYSTEM CPU/bin.

12. If this is a new installation, it would probably be best to log out and log back in again
before running any of the tools. This executes the shell start-up scripts, modifying the PATH
environment variable to include the newly-created location for the tools executables.

5.6 Running Wind-US on the NAS

1. Make a directory containing your Wind-US input files:

run.dat
run.cgd
run.mpc
run.lis (if continuing from a previous solution)
run.cfl (if continuing from a previous solution)

The run.mpc file should have the following form:

/ Wind-US parallel processing file for NAS.
/ Currently set to use 2 nodes with 12 processors each
/ and 1 node with 6 processors
/ for a total of 30 cores.
/
host localhost nproc 12
host localhost nproc 12
host localhost nproc 6

Each different type of NAS compute node has a different number of processors. For example,
the Westmere nodes have 12 processor cores. Therefore, each host entry above has at most
nproc 12. The user will need to experiment to determine whether the best performance is
obtained when all of the processor cores on a given host are used (12+12+6=30) or when
the hosts are most closely balanced (10+10+10=30). The difference between internode and
intranode communication might be mesh dependent.

Users might also want to include a checkpoint command in the above file so that the worker
solutions are sent to the master process at regular intervals. Please see the Wind-US User’s
Manual for more details on the format and features of the parallel processing file.

2. Start the Wind-US script with one of the following commands:

34

5 Installing and Running the Build Distributions on the NAS

wind -runinplace -cl -usessh -mpmode MPI -mpiver SGI
wind -runinplace -cl -usessh -mpmode PVM

• To specify a non-default NAS charge number, add the -grpcharge option and charge
code to the Wind-US command line.

• Follow the prompts for your input, output, mesh, and flow files or specify them on the
command line using the proper syntax.

• When asked, indicate that you want to run in multi-processor mode.

• If prompted, enter the number of zones in the cgd file.

• When prompted for the type of queue, choose QSUB PBS QUE.

• Enter the queue name: i.e., long for the long queue.

• Enter the solver run wall clock time.

• Enter the termination processing time.

• Enter the number of nodes to run on. This should match the number of host entries in
your mpc file.

• Enter the number of processors per node to use.

• Enter the number of MPI processes per node to use. This is typically the same as the
number of processors per node. For the default setting of ASSIGNMENT MODE DEDICATED
in the .mpc file, each zone should have its own MPI process. One additional MPI process
is required for the master process. You must remember to account for this extra process
when answering the prompts or your run will fail to initialize MPI.

• Enter any optional attributes. For example, to specify that the job should run on West-
mere nodes use the following:

model=wes

The model names for other processor types are listed in Table 1.

• When prompted to ”Press CR to submit job, or another key (except space) and CR to
abort,” do the latter. This will create a file called run.job.pl.

The maximum solver execution time is determined by subtracting the termination processing
time from the solver run wall clock time. When the Wind-US run job is submitted, it will
create a preNDSTOP file. When the maximum solver execution time has expired, this file will
be renamed NDSTOP, forcing Wind-US to begin a graceful shutdown.

Users should make sure that the termination processing time is sufficient to allow Wind-US to
complete the termination process. At the end of the *.lis, there is a summary indicating the
time spent during execuation and termination.

Users should also make sure that they request adequate time from the queue in which they
submit their jobs. This is detailed in the next step. Otherwise, the queue will terminate
Wind-US, resulting in a less than graceful shutdown.

3. Edit run.job.pl. If you see a line like the following near the top of the file:

#PBS -l nodes=1234:ppn=2

replace it with

35

Wind-US Installation Guide

#PBS -l select=2:ncpus=12+1:ncpus=6
#PBS -l walltime=40:00:00
#PBS -m e

This will select 2 nodes with 12 cpus and 1 node with 6 cpus, which matches the request in
the run.mpc file. The walltime can be adjusted as desired (hh:mm:ss) or as an integer number
of seconds, and the last line will send you an email when your job is completed.

Make sure to request at least as much walltime as was specified in the Wind-US prompts above,
because the queuing system does not terminate jobs as cleanly as Wind-US does.

4. If you plan on resubmitting the same job again later (i.e., you want to run 10000 cycles now
and 10000 cycles later) you can save a copy of the run script.

cp -p run.job.pl run.job.pl.bak

To resubmit later, you can skip the above steps and simply reuse the run script.

cp -p run.job.pl.bak run.job.pl

Note that if you increase the number of cycles in your *.dat file, you may need to adjust the
run time specified in the job file.

5. Submit the job to the long queue with the command:

qsub -q long run.job.pl

Some other useful commands are:

Command Action
qstat -q List all queue names and run limits.

qstat -a long List all jobs running in the long queue.
qstat -u USER List all jobs running for username USER.
qdel JOBNAME Delete job with name JOBNAME. Useful if Wind-US has not yet started.

6. In order to improve I/O performance for large jobs, Wind-US 3.0 uses a newer ADF library
than its predecessors. Grid and solution files used with Wind-US 3.0 will automatically be
upgraded to the new format, and the tools compiled in the above steps will also work with
the new file structure. However, if you transfer the grid or solution file(s) back to your local
workstation your existing tools may not be able to read them. If you experience this problem,
you should upgrade the tools at your local site.

36

6 Porting Wind-US to a New UNIX Platform5

6.1 Porting Guidelines

The source files for Wind-US (and the non-system libraries it depends on) are provided in the
build distribution. See Section 2.2.2 for instructions on how to obtain copy. Put the gzip’ed tar
file containing the build distribution into an appropriate directory. The same one used for the
application and tools distributions would be a good choice. In that directory, unpack the file by
doing:

gunzip -c filename | tar xvf -

where filename is the file name, including the .tar.gz extension. Once you have installed the source on
your system, change directory to the wind-dev directory and set the WIND_DEV environment variable
to point to that directory. For example, if the previous step was done in /usr/local/wind, csh and
tcsh users would do

cd wind-dev
setenv WIND_DEV /usr/local/wind/wind-dev

Now you are ready to begin the task of actually porting Wind-US. There are three files you need
to either examine or, if they don’t already exist, create:

• $WIND DEV/Makefile.Configure

This file contains generic information such as the name of the make utility, where to find the
source for the various components of Wind-US, and whether or not to build PVM. In addition,
this file defines the machine and CPU type for which Wind-US will be built. By default,
these are set from the SYSTEM and SYSTEM_CPU environment variables. If this file doesn’t exist,
download the build distribution again — something went very wrong.

• $WIND DEV/source/makefiles/Makefile.include.$SYSTEM.$SYSTEM CPU.opt

This file contains system-specific information, such as compiler names, optimization switches,
machine-specific compilations, the name of the awk command, the location of the C pre-
processor cpp, and extra libraries which must be linked in. Pay particular attention to the
MCHNSRCS lines in the “Common File directory special rules” section. If you are compiling for
a completely new machine, you may have to create one or more of these files (which are found
in $WIND DEV/libcfd/machine.lib). You may, however, be able to use files created for other
machines.

Note: There are other possible extensions than .opt for this file. If you wish to compile for
use with a debugger, create a Makefile.include... with a .dbx extension. See the SGI files for
examples. Another possible extension is .pure, which defines the compilation configuration for
use with the Purify debugging software package.

• $WIND DEV/source/makefiles/pvm conf/$SYSTEM.$SYSTEM CPU.def.opt

This is the PVM configuration file. If your system is not currently supported, check in
$WIND DEV/pvm/conf to see if a configuration file for your system already exists. Note
that the definition of SYSTEM may be different for PVM than for Wind-US. If you cannot find
a pre-existing configuration file for your system, you will have to create one. Choose a file for
a system similar to yours and use that as a starting point.

Note: As before, there are other extensions besides .opt. See the SGI files for examples.
5The material in this section was originally written by Chris Nelson of Sverdrup Technology, Inc. - AEDC Group.

37

Wind-US Installation Guide

When all three files exist and everything appears in order, then simply type make opt (if you
want to compile for optimization) and the make system should take care of the rest. If you type
make by itself (or make help), a list of all the compilation options will be printed.

6.2 Frequently (or not) Encountered Problems

1. The SYSTEM and SYSTEM_CPU variables are not being set in a way that makes sense for my
system. What can I do?

It is likely that the pvmgetarch and pvmgetcpu scripts need to be modified to detect your
particular system. These scripts are found in the $CFDROOT/bin directory. You will have
to determine for yourself how the scripts can correctly distinguish your system from others,
but the examples already in them should get you started.

Once you have modified the files, you will need to copy them to several different places. Copy
$CFDROOT/bin/pvmgetarch to $CFDROOT/pvm/pvmgetarch-cfd and also to
$WIND DEV/pvm/lib/pvmgetarch-cfd. Copy $CFDROOT/bin/pvmgetcpu to
$CFDROOT/pvm/pvmgetcpu-cfd.

Ideally these files should be links, and perhaps some day they will be.

2. Can I cross-compile Wind-US for a different system using these makefiles?

If you have a compiler that is capable of compiling for many different machines/CPUs, then
you may want to use a single machine to create executables for all of them. To some extent,
this is possible, but it will take some extra work on your part.

First, modify $WIND DEV/Makefile.configure so that SYSTEM_SUFFIX and SYSTEM_BLD_CPU
are set to the machine you wish to compile for. The extra work comes because the PVM
compilation system is not set up for cross-compiling. Therefore, you must set BUILD_PVM to
NO and obtain (by one means or another) PVM libraries and executables for each machine
you wish to compile for. For SGI workstations with MIPS processors, the default is to
compile PVM for the lowest common denominator CPU, so, for a given operating system,
you should be able to use the same PVM files for R10000 (and up) machines.

3. I only have a single processor machine. Do I really have to mess with all this parallel stuff?

No, you don’t. To turn off the parallel capabilities of Wind-US, edit
$WIND DEV/Makefile.configure and set BUILD_PVM to NO. Next, edit
$WIND DEV/source/Makefile.user and remove pssubs from the LINK_MODULES line and add
it to the DUMMY_MODULES line.

4. The compilation gets all the way to the end, and then fails with complaints about rcutv1,
rcutaa, and rcimsc being unresolved symbols. What gives?

This problem pops up on Sun workstations (and maybe others) because awk is not working
as expected. Check to see if nawk is available on your system. If it is, edit
$WIND DEV/source/makefiles/Makefile.include.$SYSTEM.$SYSTEM CPU.opt and set the
AWK variable to nawk.

5. I modified $WIND DEV/source/makefiles/Makefile.include... (or
$WIND DEV/source/makefiles/pvm conf/$SYSTEM...def...), but when I re-compile, none
of my changes are picked up. What is wrong?

The problem is that the files that are actually used for the compilation are not the ones
under $WIND DEV/source/makefiles. The actual files are:

38

6 Porting Wind-US to a New UNIX Platform

$WIND DEV/Makefile.include.$SYSTEM.$SYSTEM CPU and
$WIND DEV/pvm/conf/$PVMSYS.def, where $PVMSYS is set by
$WIND DEV/pvm/lib/pvmgetarch. When you make changes, you must either copy the files
to their final destination or “select” the makefiles for the type of build you’re doing (using, for
example make select_opt if you want to compile with optimization). When you run one of
the “global re-build” compilations (e.g., make opt) then the “select” is done automatically.
Ideally, the system should automatically check to see if any of the configuration files have
been modified, but right now they don’t.

6. I modified $WIND DEV/Makefile.include.SYSTEM.SYSTEM CPU (or
$WIND DEV/pvm/conf/$PVMSYS.def), but when I tried to build Wind-US, it didn’t seem
to find my changes. I checked the files, and my changes were gone. What happened?

See the answer to #5, above. The short answer is that your changes were overwritten. You
have to modify the files under $WIND DEV/makefiles and “select” them in order to be sure
that the changes will “stick”.

7. My make utility complains that there are errors and aborts before anything gets compiled.
Why?

IBMs seem to be particularly bad about this. The “errors” are usually not errors in the sense
that anything is catastrophically wrong, but rather, in the process of house-cleaning, the
make system may be trying to remove files that don’t exist or is checking to see if a file does
exist when it doesn’t. The solution is to modify $WIND DEV/Makefile.configure and add a
-i switch to the MAKE and PVMMAKE variables. Sometimes, switching to gmake will solve the
problem, but be aware that the PVM make system has make hardwired. It may also be
necessary to start the make process with the -i switch (e.g. make -i opt).

8. When I try to compile, it gets to a certain point and then just hangs. What is the problem?

The system of makefiles used to build Wind-US is pretty complex, and some versions of make
just can’t handle this complexity. The weakest link appears to be in the PVM build. If your
make utility is not up to the task, try using another one (such as gmake). Since the PVM
makefiles are hardwired to use make, you may have to use an alias rather than changing
Makefile.configure. For example, on the HP/Convex CSPP system, it might be necessary to
alias make to gmake.

9. I’m getting undefined symbols at the end of my compilation, but it’s more than just the three
you mentioned in question #4. What are likely causes of the problem?

The most likely explanation is that your system does not load all the libraries you need by
default. Run grep on some of the symbols that it complains about (ignoring post-pended
underscores — i.e. psexit, not psexit_) and see if the routines are from within Wind-US:

cd $WIND_DEV/source
grep the_unknown_symbol */*

If that fails to find anything, check in libcfd :

cd $WIND_DEV/libcfd
grep the_unknown_symbol */*

If you still can’t find it, try libadf :

cd $WIND_DEV/libadf
grep the_unknown_symbol *

39

Wind-US Installation Guide

If that fails as well, then hunt through the $WIND DEV/pvm subdirectories in a similar
fashion. Once you are satisfied that the symbol is not from anything in the Wind-US
distribution, you will have to poke around the system libraries to identify which ones should
be added to the EXTRALIBS line in
$WIND DEV/source/makefiles/Makefile.include.$SYSTEM.$SYSTEM CPU.opt (or .dbx
etc.).

If the symbols are from within Wind-US, you need to look back through the compiler listing
to see what messages were output when the library which contains that routine was compiled
to see what went wrong.

10. I’m having trouble compiling the ADF library. What can I do?

The ADF core library (libadf) has only been ported to a finite number of machines. If your
machine is not one of them, you may have to add some lines to ADF fbind.h for your system.

11. I’m getting some fairly bizarre compiler errors when compiling the Common File library.
What is going on?

As with the ADF library (see #10), the Common File library has only been ported to a
limited number of machines. Check in $WIND DEV/libcfd/include/bind f and c.h to see if
definitions for your system are there. If not, you will have to add them.

12. Okay, I got libadf and libcfd to compile, but now Wind-US itself is complaining. Where
should I look?

As with libadf (see #10) and libcfd (see #11), you may need to add lines appropriate for
your system to a header file. In this case, it’s $WIND DEV/source/include/fbind.h.

13. I’m having trouble getting PVM to compile and run properly. What should I do?

If the problem seems to be with the make system itself, then you may be able to successfully
compile “manually” by using the following procedure (modify as needed for your particular
shell):

cd $WIND_DEV/pvm
setenv PVM_ROOT $cwd
make clean
make

If that works, then copy the PVM libraries (in $WIND DEV/pvm/lib/$PVMSYS) to the
$LIBDIR defined in Makefile.configure. Also remember to copy the PVM executables to
$CFDROOT/pvm/$SYSTEM/$SYSTEM CPU.

An additional possibility is that you have another version of PVM already installed, and
certain environment variables may be set for that version which conflict with the version of
PVM shipped with Wind-US. The solution is to make sure that neither of the environment
variables PVM_ROOT nor PVM_ARCH are set prior to compiling or running Wind-US. (The
various scripts should set these variables as needed).

If you still can’t compile or run PVM, then you may need to talk to the PVM developers (see
http://www.epm.ornl.gov/pvm/) to see about porting it to your system. In the meantime,
you can still run Wind-US in single processor mode (see #3).

14. I’ve gone through the whole process you describe above (in Section 6.1), but when I type make

opt, I get one or more errors dealing with file permissions, like

40

6 Porting Wind-US to a New UNIX Platform

cp: cannot create /usr/local/wind/wind-dev/include/ADF.h:
Permission denied.

What is the problem?

By default (for security reasons, I believe), the source files only have “read” permission
enabled. Thus, when the make system tries to do an operation which results in a “write”
(which happens mostly when it’s setting up the include directory), an error results and the
system screeches to a halt. The solution is to make sure that you have write permission for
all files and directories under $WIND DEV.

15. When running the Wind-US code on my brand new SGI R12000 system, I get the following
error message

Program aborting due failure in common I/O library call.
Subroutine called: CFRWFC
ADF 54: A node-id of 0.0 is not valid.

What should I do?

The cause of this problem has been traced to a change in the default floating point exception
mode for R12000 systems. R10000 and R4400 SGI systems are not affected.

To run Wind-US on R12000 systems, you can upgrade to IRIX 6.5.4, and make sure that the
kernel parameter “fpcsr_fs_bit” is equal to zero. After upgrading to IRIX 6.5.4, the value
of this parameter may be determined by doing

systune fpcsr_fs_bit

If the value is non-zero, it should be changed by doing (as root)

systune fpcsr_fs_bit 0

The change in the value of fpcsr_fs_bit occurs dynamically, and does not require rebooting
the system.

16. I finally got everything to compile and link, but when I try to run the code, I get a “Program
aborting due failure in common I/O library call” message, and then the code exits. What
should I do?

If you’re running on an SGI R12000 system, see the previous question. Otherwise . . .

Ironically, the weakest link in the Wind-US chain (as far as porting goes) has nothing to do
with the solver algorithm, parallelization, or memory management (in the fluid solver). The
weakest link is, in fact, the file I/O system. The problems all seem to center around the ADF
core library. Even if you did not see a specific ADF error code (e.g., “ADF 54: A node-id of
0.0 is not valid”), if you can run the same case (with the same files) on another machine, the
problem is almost certainly in libadf.

If this happens, please notify the code developers so that we can work on finding a fix.
Obviously, if we don’t have access to a machine of the type you are working on, then our
ability to solve the problem is limited, but at least we can note the problem. If you feel
energetic, you could also notify the CGNS folks over at https://cgns.github.io/ that you
found a problem.

You can, of course, attempt to debug it yourself. If you do find a solution, please send it to
us so that we can make the fix available to everyone. If, however, you don’t have the time or
the inclination for that, then your best bet is to convert your input Common Files (which are
version 3.0 by default) to version 2.0. Version 2.0 of the Common File system does not use the

41

https://cgns.github.io/

Wind-US Installation Guide

ADF core, and, so far, it has always worked when version 3.0 wouldn’t. The way to convert
the files is to use the cfcnvt utility. Choose option 3, “Compress a Common File”, answer the
questions, and then enter “2” when asked “Output CF version number (2 or 3 (default))”.6

17. When compiling the Common File library, I’m getting messages about an undefined function
called “tempnam”. What should I do?

Edit all Makefile.include.$SYSTEM.$SYSTEM CPU.* files (found in
$WIND DEV/makefiles). Look for a line that defines “CFDEFS”. On this line add
“-DNO_TEMPNAM”. Next, “select” the appropriate compilation type (e.g., make select_opt)
and re-compile.

6 Note that this assumes you have access to a system for which the tools executables, including cfcnvt, are available.

42

	Overview
	Obtaining Wind-US and the Tools
	IVMS (Internet Version Management System)
	Wind Projects and Versions
	Wind-US Application Distribution
	Wind-US Build Distribution

	Tools Projects
	Tools Application Distribution
	Tools Build Distribution
	Individual Tools

	Installing the Application Distributions
	Installing on a UNIX System
	Using Symbolic Links for Similar Systems
	Installation for NFS Access
	Installation for Parallel Execution on Distributed Systems

	Installing on a Windows System

	Installing the Build Distributions
	Building Wind-US
	Building the Tools

	Installing and Running the Build Distributions on the NAS
	Security Issues on the NAS
	Storage Issues on the NAS
	Computational Resources on the NAS
	Building Wind-US on the NAS
	Building the Tools on the NAS
	Running Wind-US on the NAS

	Porting Wind-US to a New UNIX Platform
	Porting Guidelines
	Frequently (or not) Encountered Problems

